Class 12 - Preprocessing (Legal) Information using dPlyR  - In this class, we will explore the often difficult and time consuming task of preparing data for analysis.  The dPlyR library in R is one of a set of emerging tools that can assist in the task. 

 

 

Instructors
Daniel Martin Katz   <CV> <SSRN> <arXiv>
Michael J. Bommarito  <CV> <SSRN> <arXiv>

Review Modules
I.     Review Materials (Intro to Stats, Regression, etc.)
II.    R Tutorials <Install> <Part1> <Part2> <Bonus>
III.   Github and RMarkdown Tutorial

Course Modules
1.    Introduction to Legal Analytics
2.    Introduction to Machine Learning for Lawyers
3.    Quantitative Legal Prediction + Business of Law
4.    Bias/Variance, Precision/Recall & Dimensionality
5.    Overfitting, Underfitting, & Cross-Validation
6.    Logistic Regression and Maximum Likelihood
7.    K Nearest Neighbors + Naive Bayes Classifiers
8.    Binary Classification w/ Decision Tree Learning
9.    Ensemble Models including Random Forests
10.  Clustering (K-Means & Hierarchical Clustering)
11.  Data Visualization and DataViz in R
12.  Data Preprocessing and Cleaning using dPlyR
13.  Network Analysis and Law
14.  Natural Language Processing (NLP) Overview
15.  Applied Legal Analytics - Contract Analytics
16.  Applied Legal Analytics - Exploring SEC Data
17.  Applied Legal Analytics - Judicial Prediction
18.  Applied Legal Analytics - Regulatory Outcomes
19.  Applied Legal Analytics - Legal Sentiment Analysis
20.  Advanced Topics - Kernels & SVM
21.  Advanced Topics - EM Algorithm  
22.  Advanced Topics - Neural Networks
23.  MLaaS and Shifting Economics of #BigData